就在您认为大数据不可能再变大时,它还在不断变大。 无论其实际大小,大数据正在显示价值。 各个地方的组织都有各种形态与大小的大数据。 这些组织意识到其重要性、机遇以及给予关注的迫切需要。 很显然,无论忽略与否,大数据都会不断发展。 已掌控大数据(在明了其价值前储存的多结构混乱数据)的组织正在提升组织效率、提高收益,并发展新的业务模式。 他们是怎样做到的? 这些机构成功的方法可以总结为七条建议。 1、以短期考虑促进长期考虑 担心能否跟上大数据的潮流的人,不止您一个。 一切都瞬息万变,因此无从知道今年或明年哪些工具、平台或方法是最好的。 放宽心。 这种快速演变的形势可以为您服务。每年,供应商都在大数据使用方面不断提高。 关系与在线交易系统(OLTP)会越来越高效、越来越智能,无论是在内部还是云中运行。 技术的发展将会缓和 Hadoop 及数据仓库之间的关系。 而且,始终会有产品上市,更精准地满足您的具体需求。 因此,敬请宽心。对采纳新产品保持开放心态,只要这些产品能提供足够价值,就能名正言顺地融入您的现有环境。 保持能够直连多种格式的商业智能平台。 您现已准备好应对市场变化。 2、看清错误选择 贵机构需要什么,Hadoop 还是数据仓库?别说,这还真是个有陷阱的问题。 不光是 Hadoop 与数据仓库能够很好地协同工作,机构实际上还能从两者的协作获益。 数据仓库用来压缩重要结构化数据再适合不过,还能把数据存储在商业智能工具和仪表板能够轻松找到的地方。 但其弱势是,分析过程与某些类型的转换较弱且慢。 这一点正好由 Hadoop 补充。 此外,尽管 Hadoop 在交互式查询与数据管理方面较为弱势,但其善于快速容纳原始、未结构化的复杂数据。 这两者合而构成共生关系。 例如,想象一下高层管理用来预测下一年库存需求的数据。 数据集可能很大,几乎没有时间给数据建模、重新结构化,也没有时间以其他方式预处理好数据,供数据仓库使用。 高层管理人员用完以后,可能仅一周时间,就会丢弃。 这就是 Hadoop 该出来发挥作用,细化数据并把样本发送到数据仓库的时候。 “大数据并不是数据仓库的替代品,” Third Nature CEO Mark Madsen 在其“大数据的真实含义”一文中写道, “也不是单独维护的孤岛。 大数据是新 IT 环境的一部分。” 不要在选择 Hadoop 还是数据仓库这个问题上不知所从。 您可以,也应该使用两者。 3、浓缩大数据,使之一目了然 结构出色、考虑周全的可视化平台让其他系统都黯然失色。这是电子表格无法带来的。 — 富国银行达纳·朱伯 大数据可视化之后,浓缩到一目了然的程度。Aberdeen Group 的一份报告发现:“在使用可视化发现工具的机构中,48% 的商业智能用户,无需 IT人员的帮助,即可找到需要的信息。” 如果没有可视化发现工具,这个比例降到了 23%。 此外,根据这份研究,使用可视化数据发现的经理较之没有可视化数据的经理找到及时信息的可能性,要高出 28%。 或许,最为重要的是,在涉及到大数据的情况下,报告发现可视化还能促进与大数据的互动。 较之其他经理,使用可视化数据的经理与数据广泛互动的可能性要高出一倍多(33%比 15%)。 另外,这些经理还更有可能即兴提问,往往是受到前一刻洞见启发的问题。 以可视化的方式探索数据,使得数据生动呈现,让大脑能够瞬间理解。 富国银行战略规划副总裁达纳·朱伯称:“会有一些萌生的想法,这是电子表格无法带来的。” 资料来源: Jock D. Mackinlay, PhD, “How to See and Understand big data,” 2007 年借助可视化分析,您还可以随时做两件事: • 改变正在查看的数据,因为不同的问题往往需要不同的数据。 • 改变查看数据的方式,因为每种视角都可以回答不同问题。 利用这些简易步骤,您就进入了名为“可视化分析循环”的状态:获取数据、查看数据、提问并回答问题,然后周而复始。 每一次,您的问询都会随洞见深化。 您可以向下搜索、向上搜索,或者横向搜索。 您可以把新数据添加进来。 随着可视化加速并扩展您的思维,您会创建一个接一个的视图。 准备就绪后,就可以分享。 同时提出并回答自己的问题,加速整个团队的洞见、行动和业务成果。 在台式机、iPad 或 Android 平板电脑上查看实时网络仪表板并进行交互 4、赋予用户以深刻洞见 您是否认识迷上了洞见的人? 没有什么能阻止这些人。 他们不断提出新问题并创造新价值,直到完成一切,心满意足,或者直到需要填写 IT 申请。 有了大数据,对洞见就入迷更深了。 然后就是热情澎湃地投入。 现在,除了自助式数据分析外,根本没时间忙别的。 “与其他组织相比,拥有大数据的组织拥有主要由商业部门而非 IT 组驱动的 BI 项目的几率要高出 70%多,” Aberdeen Group 最近发布的“转向大数据还是破产倒闭? 最大化分析和大数据的价值”中表示。有了大数据,商业用户无需再忍受 IT 部门老旧、缓慢的方法,这种方法发布数据的方式就像一章一章地展开一本书。 在《大数据的价值》(The Value of big data)中,Third Nature 研究分析师马克·马德森写道:“不光是商业智能发布模式已老旧,商业智能模式期望信息在其中使用的环境也同样过时。” 这就好像借着旧时灯光或烛光读书 – 也就是以前所谓的“刻苦钻研”。 马德森继续写道:“大数据就像电气照明,把之前幽暗的角落都照亮了。 它提供的不仅有更明亮的光线,还有随需随取的能力。 无需耗费数月等待数据完好清理并可供使用,现在可以利用大数据技术察觉并发现数据中的价值。 如果数据有价值,可以通过更严格的流程发送,供数据仓库使用。”
不要再强迫用户“刻苦钻研”, 而要给他们赋予能力。 |